
FAH-Documentation-Test
Documentation

Release 0.0.1

LPunizh

Dec 10, 2020

CONTENTS:

1 User Guide 3

2 Contact Us 9

3 reStructuredText (RST) Tutorial 11

4 Noted Style/Font 29

i

ii

FAH-Documentation-Test Documentation, Release 0.0.1

This is a test build for Folding@Home’s User Guide Documentation.

Folding@home (FAH or F@h) is a distributed computing project for simulating protein dynamics, including the
process of protein folding and the movements of proteins implicated in a variety of diseases. It brings together citizen
scientists who volunteer to run simulations of protein dynamics on their personal computers. Insights from this data
are helping scientists to better understand biology, and providing new opportunities for developing therapeutics.

CONTENTS: 1

mailto:Folding@Home's
mailto:Folding@home

FAH-Documentation-Test Documentation, Release 0.0.1

2 CONTENTS:

CHAPTER

ONE

USER GUIDE

This is a test build for Folding@Home’s User Guide Documentation.

User Guide Documentation.

1.1 General

This is a test build for Folding@Home’s General Documentation.

General Documentation.

1.1.1 Installation Guides

1.1.2 Running Folding@Home

1.1.3 Troubleshooting

Do I need administrator privileges to install the FAH client?

In most cases, yes. If you do not have administrator privileges or cannot access an administrator account, this indicates
that you do not own or manage the computer. Most clients need to have some administrative access to complete the
installation. If you do not have the rights, you are advised to ask for permission before going any further.

It is against the FAH End User License Agreement (EULA) to circumvent these restrictions without the expressed
permission of the computer’s owner. If you are the owner and do not know how to use administrator privileges, please
ask someone with more experience to help you.

How can I get installation help if I have a problem?

When one or more steps are difficult to comprehend, you can ask for help on the Folding Support Forum. Someone
will provide the answer or help you to complete the installation. In some cases, you may have additional questions
after the installation. Feel free to Search the Guides and FAQ pages for answers. You can also Search the Forum for
answers or Tools, post a new question, or read through the FAH FAQs.

When asking for help in the forum, please let us know which install guide you are using so we can follow along. And
if you know your computer specifications and the client info you are trying to install (i.e. operating system, client
version, client type, driver version, etc.) please list these with your question. This information is not required but will
help us answer your questions more quickly.

3

mailto:Folding@Home's
mailto:Folding@Home's

FAH-Documentation-Test Documentation, Release 0.0.1

1.1.4 Rules & Policies

1.1.5 Stats, Teams and Usernames

1.1.6 Points

1.1.7 OpenSource

FAH is built from several open source tools, namely Gromacs (http://www.gromacs.org), TINKER (http://dasher.
wustl.edu), and AMBER (http://ambermd.org/) for MD packages and MPICH for MPI (http://www-unix.mcs.anl.gov/
mpi/mpich/). If you’re interested in checking out these codes, you should feel free to download them and check them
out. One can compile a SMP version of Gromacs by using the latest Gromacs with MPICH. This would reproduce the
SMP clients we have on FAH.

DATA

We’ve partnered with the Simbios National Biomedical Computing Center to provide data for download. If you’re
curious, check out our first data set project page

https://simtk.org/home/foldvillin

We’ll be releasing more data as time goes on. Our hope is that by making the raw data openly available, this will
greatly supplement the published results.

FULL OPEN SOURCING OF THE CLIENT

We have not outsourced the client for several reasons, relating to client reliability and other issues. However, we’ve
come up with a compromise — we have been developing a plug in architecture to allow people to write open source
code that we can plug into our client. Visit the Folding Support Forum to discuss, ask questions, and show off your
work.

ISN’T GROMACS A GPL’D CODE? WHERE’S THE SOURCE FOR YOUR MODS?

Folding@home has been granted a non-commercial, non-GPL license for Gromacs, so we are not required to release
our source. We have analogous license for the other core codes. The copyright owners of any GPL code (in this case
the owners are the Gromacs development team) can distribute the same piece of software with difference licenses in
parallel. See the GPL FAQ for more info on this. However, we will release our patches back to the Gromacs tree (and
have discussed this extensively with the Gromacs team).

We are also working to release our GPU code and other aspects of FAH mods in a new open library called OpenMM.
You can learn more about that here: https://simtk.org/home/openmm.

It is important to note that we do release the scientific modifications back to the open source community, but do
not release information which would enable donors to cheat on points, which some donors have done ruining the
experience for many others.

4 Chapter 1. User Guide

http://www.gromacs.org
http://dasher.wustl.edu
http://dasher.wustl.edu
http://ambermd.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
https://simtk.org/home/foldvillin
mailto:Folding@home
https://simtk.org/home/openmm

FAH-Documentation-Test Documentation, Release 0.0.1

1.1.8 Donation

WHAT WOULD MY DONATION OF FUNDS GO TO?

We are currently raising funds for new servers, to increase our server reliability. In general, we have needs both large
(e.g. servers, graduate students, developers etc.) and small (memory, hard drives and backups). For example, we have
to deal with over 500 terabytes of valuable scientific data, and more data comes in every day, all of which must be
backed up and carefully preserved. This process is necessary, but quite expensive. Every little bit helps.

1.1.9 FLOPS

1.1.10 Press Info

1.1.11 Miscellaneous

1.2 FAQ

You’ll find a large library of frequently asked questions about all things connected to Folding@home.

This section contains everything from guides and information about how to install and use the Folding@home software
to the science behind our research. Look through the sidebar and find the topic you want to know more about.

1.2. FAQ 5

mailto:Folding@home

FAH-Documentation-Test Documentation, Release 0.0.1

Overview

• FAQ

– Can I run Folding@home on a machine I don’t own?

– What are the minimum system requirements?

– What happens if there is a suspected license (EULA) violation?

– What has been “folded” so far, and how much have I folded?

– What has the project completed so far?

– What is distributed computing?

– What is Folding@home? What is protein folding?

– Who “owns” the results? What will happen to them?

– Why don’t you post the source code?

– Why not just use a supercomputer?

1.2.1 Can I run Folding@home on a machine I don’t own?

Please only run Folding@home on machines you either own or on which you have the permission of the owner to run
our software. If there is any doubt (eg you want to run on computers at work), we suggest you get written approval
(eg get your superior to sign a letter giving authorization); we have found that written documentation of this sort is
important if there is ever any dispute of whether permission was indeed granted. Please do not assume that permission
is granted by the owner. Any other use of Folding@home violates our end user license agreement (EULA), and just
isn’t a good idea in general.

1.2.2 What are the minimum system requirements?

All computers can contribute to Folding@home. However, if the computer is too slow (e.g. wasn’t built in the last 5
years or so), the computer might not be fast enough to make the deadlines of typical work units. A Pentium 4 or newer
equivalent computer (with SSE) is able to complete work units before they expire.

Folding part time (less than 24 hours a day) will increase the minimum system requirements to make the deadlines. In
this case, it is up to the donor to determine how many hours a day are required to fold and still meet the deadlines with
each computer.

1.2.3 What happens if there is a suspected license (EULA) violation?

We will attempt to contact the donor if there is some suspicion of a EULA violation. Many donors use their email
as their donor name and this is helpful. If do not have any information on hand and we have been presented with a
sufficiently strong case that there was a EULA violation, we will zero the points of the donor and not allow clients
to run under the name of that donor. This decision can be reversed if there is sufficient information to exonerate the
donor. The donor should contact one of the Pande Group members or Forum Moderators at our forum to get in touch
with us in such a situation.

6 Chapter 1. User Guide

mailto:Folding@home
mailto:Folding@home
mailto:Folding@home

FAH-Documentation-Test Documentation, Release 0.0.1

1.2.4 What has been “folded” so far, and how much have I folded?

We’ve simulated a wide variety of proteins and other molecules. We divide the simulations into packets called “Work
Units,” (WUs) each of which is sent to a computer for processing. We then assemble all the WUs from a project into a
completed simulation. We keep many types of statistics of users and work accomplished in our Stats section. You can
check your Individual stats, Team stats, and overall Project stats. Please also review the Results and Awards sections.

1.2.5 What has the project completed so far?

We have been able to fold several proteins into the 1.5 millisecond time range with experimental validation of our
folding kinetics. This is a timescale a thousand times longer than any previous atomic-level simulation, and represents
a fundamental advance over previous work. We are now simulating important proteins used in structural biology
studies of folding as well as proteins involved in disease. We’ve been able to perform detailed simulations of many of
these proteins at biologically-relevant timescales, giving us insights that had previously been unobtainable. We’ve also
identified several potential drug candidates which may be able to fight Alzheimer’s, cancer, and infection by viruses.
Peer-reviewed scientific papers detailing our results are posted on our Results page, and many of them are published
in top journals such as Science, Nature, PNAS, and JMB. These publications are highly detailed and often technical,
but summaries of their findings can be found on Results page as well as the Folding@home article on Wikipedia.

1.2.6 What is distributed computing?

Distributed Computing is a method of computer processing in which different parts of a program, or different portions
of data, are processing simultaneously on two or more computers. We are able to use this approach to significantly
accelerate our research. Folding@home is one of the largest, most powerful, and most widely distributed computing
networks.

1.2.7 What is Folding@home? What is protein folding?

Folding@home is a distributed computing project, that very simply stated, studies protein folding and misfolding.
Protein folding is explained in more detail in the scientific background section. It also helps us develop drugs to
combat disease.

1.2.8 Who “owns” the results? What will happen to them?

Folding@home is run by an academic institution (specifically the Pande Group, at Stanford University’s Chemistry
Department), which is a nonprofit institution dedicated to science research and education. We will not sell the data
or make any money from it. Moreover, we will make the data available for others to use. In particular, the results
from Folding@home will be made available on several levels. Most importantly, analysis of the simulations will
be submitted to scientific journals for publication, and these journal articles will be posted on the web page after
publication.

Following the publications of these scientific articles, w e will make the raw data of the folding runs available to other
researchers upon request. The data sets from some of our most prominent simulations are already publicly available.
We’ve also striven to share our key technologies with other scientists, to assist their research as well.

1.2. FAQ 7

mailto:Folding@home
mailto:Folding@home
mailto:Folding@home
mailto:Folding@home
mailto:Folding@home

FAH-Documentation-Test Documentation, Release 0.0.1

1.2.9 Why don’t you post the source code?

Most of the critical parts of FAH are publicly available. The Tinker and Gromacs source codes can be downloaded
and run. Unlike many computer projects, the paramount concern is not functionality, but the scientific integrity, and
posting the source code in a way that would allow people to reverse engineer the code to produce bogus scientific
results would make the whole project pointless. However, we stress that the vast majority of our code is already open
source. We have an Open Source FAQ with more details.

1.2.10 Why not just use a supercomputer?

Modern supercomputers are essentially clusters of hundreds of processors linked by fast networking. The speed of
these processors is comparable to (and often slower than) those found in PCs! Supercomputers are not only very
expensive to operate, but they are often simultaneously shared by many different research groups, and it is a challenge
to scale a molecular simulation to all of their processors. Protein folding dynamics is statistical in nature, so a single
long simulation from a supercomputer would not be sufficient to fully understand the folding process. Folding@home
is one of the most powerful computing systems on the planet, and we use novel methods to utilize its network to
statistically analyse the dynamics of protein folding. Hence, the calculations performed on Folding@home would not
be possible by any other means! This is possible since PC processors are now very fast and there are hundreds of
millions of PCs sitting idle in the world.

8 Chapter 1. User Guide

mailto:Folding@home
mailto:Folding@home

CHAPTER

TWO

CONTACT US

2.1 Do you have technical problems with the client(app)?

Tech support is found at:

• Discord

• Foldingforum.org

Do you want to report a client issue or bug?

• Github

2.2 Do you want to report a security vulnerability?

Email Joseph: joseph@cauldrondevelopment.com

2.3 Does your company want to help us?

Email Anton: thynell@stanford.edu

2.4 Media inquiry?

Email Anton: thynell@stanford.edu

9

http://discord.gg/foldingathome
http://foldingathome.org/
https://github.com/FoldingAtHome/fah-issues/issues
mailto:joseph@cauldrondevelopment.com
mailto:thynell@stanford.edu
mailto:thynell@stanford.edu

FAH-Documentation-Test Documentation, Release 0.0.1

10 Chapter 2. Contact Us

CHAPTER

THREE

RESTRUCTUREDTEXT (RST) TUTORIAL

3.1 Learn to write beautiful documents

Overview

• reStructuredText (RST) Tutorial

– Learn to write beautiful documents

3.1.1 Introduction

reStructuredText (one word) is a plain-text markup language for writing technical documents, books, websites, and
more. It is easy to read and write because it is just regular text and all you need is a simple text editor. Even
Notepad would suffice. Despite it being written in plain-text, it is powerful enough to create professional technical
documentation, books, and websites.

There are software tools that will convert your plain-text document in to the desired output format. For example:
HTML, PDF, ePub, or custom. It is capable of auto-generating table-of-contents, hyperlinks between documents,
creating headings, tables, and many other elements. It is also extendable and customizable.

In this tutorial, we will walk through everything you need to know to excel with reStructuredText. We will start with
th e basics, but if you follow through to the end, you will have a deep understanding of how it works and how to extend
the source code to suit your own needs.

The Python community were the first adopters since it’s design specification was written as a Python Enhancement
Proposal (PEP) by David Goodger in 2001.

PEP-257: Docstring Conventions PEP-258: Docutils Design Specification http://docutils.sourceforge.net/docs/peps/
pep-0257.html http://docutils.sourceforge.net/docs/peps/pep-0258.html

Do not be misled in to believing reStructuredText is only good for Python documentation. Python does use reStruc-
turedText as the standard documentation, but it can be used for any kind of documentation and even writing books and
making HTML pages. GitHub supports reStructuredText and will automatically process a README.rst and provide
the HTML output if someone lands on your project.

This is aimed at technical writers, programmers, and authors who want an easy yet powerful way to write documents
and books. If you are already familiar with Markdown, reStructuredText should come naturally. It is just as easy to get
started with, but has many more powerful features available. If you are currently using Markdown, I highly recommend
you give reStructuredText a chance. The learning curve is small if you already know very basic Markdown syntax.

http://docutils.sourceforge.net/docs/index.html

11

http://docutils.sourceforge.net/docs/peps/pep-0257.html
http://docutils.sourceforge.net/docs/peps/pep-0257.html
http://docutils.sourceforge.net/docs/peps/pep-0258.html
http://docutils.sourceforge.net/docs/index.html

FAH-Documentation-Test Documentation, Release 0.0.1

3.1.2 Create a basic .rst document

Before getting in to all of the features, let’s look at a very basic reStructuredText file. reStructuredText files typically
have .rst or .txt extensions. Here is a simple document:

=================
My Project Readme
=================

Clever subtitle goes here

Introduction
============

This is an example reStructuredText document that starts at the very top
with a title and a sub-title. There is one primary header, Introduction.
There is one example subheading below.
The document is just plain text so it is easily readable even before
being converted to HTML, man page, PDF or other formats.

Subheading

The basic syntax is not that different from Markdown, but it also
has many more powerful features that Markdown doesn't have. We aren't
taking advantage of those yet though.

- Bullet points
- Are intuitive
- And simple too

That’s a basic reStructuredText document. We haven’t looked at any of the more powerful features like hyperlinking
or adding images yet. You can save this file as README.rst or whatever you want and then store it. If you are
familiar with Markdown syntax, you’ll notice it’s not very different. GitHub also supports .rst files so if you include
a README.rst, GitHub will convert it to HTML when people land on the repository.

3.1.3 Tools

There are two primary tools for converting reStructuredText in to finished products. First, there is docutils which
is contains the core parser and writer tools. Then there is Sphinx which is built on top of docutils and intended for
larger projects. Sphinx adds even more functionality and can be used to create very professional looking documents.

docutils

docutils is a Python package that contains classes and scripts that can parse, format, and output to various formats like
HTML.

12 Chapter 3. reStructuredText (RST) Tutorial

http://docutils.sourceforge.net/

FAH-Documentation-Test Documentation, Release 0.0.1

Install docutils

Install the Python docutils package in the terminal using pip with:

python -m pip install docutils

Convert RST documents

There are several tools that come with the package, but some primary ones are:

rst2html4
rst2html5
rst2man
rst2xml
rst2latex

These tools will output to stdout that can be piped to a file like this:

rst2html5 mydoc.rst > mydoc.html

You can create custom functions called directives to enhance your markup. You can also create custom writers to
output the parsed document in different ways.

Sphinx

Sphinx is built on top of docutils. While tools like rst2html5 that come with docutils will turn a .rst file
in to a .html, it is generally good for a single page. Sphinx is good for larger documentation or writing projects. You
can have multiple .rst files in your project to organize and link between them. Sphinx is much more powerful and
can be used to publish books and websites using reStructuredText.

Sphinx has a few output options. Among the options are building a website of multiple HTML documents that link
together. When you view documentation on https://readthedocs.org or you read the official Python documentation,
those are Sphinx generated pages. You can also build it as a single- page HTML document. It also offers plain-text,
PDF, epub, and LaTeX builders.

Sphinx also adds a few custom directives (the .. prefixed functions) like the toctree which allows you to embed
the table of contents and link to another document.

If you are going for “serious” documentation, Sphinx is the choice.

Install Sphinx

Sphinx is a Python package build on top of docutils and can be installed with pip like this:

python -m pip install sphinx

3.1. Learn to write beautiful documents 13

http://www.sphinx-doc.org/en/master/
https://readthedocs.org

FAH-Documentation-Test Documentation, Release 0.0.1

Start a new project

Once sphinx is installed, you don’t generally invoke sphinx-build directly to build a project the way you call
something like rst2html. Instead, you call sphinx-quickstart which will generate a new project with its
own build script. For example, this command will create a new directory called docs and put the project inside of it:

sphinx-quickstart docs

It will prompt you for a project name and an author name, as well as many other questions. You can select all of the
defaults if you are unsure.

The new project will have an index.rst for you to start editing, as well as a Makefile and a make.bat so you
can build it on Windows. It will also have a directory for templates and building if you want to customize the output.
You can add custom CSS and HTML.

Edit the index.rst and add other pages and subdirectories as needed. When you are done editing, you can
make/build the project with the make command.

Build the project

Once you are ready to build the reStructuredText documents in to their final form, you call make:

make # Will print all options
make.bat # In Windows, sphinx-quickstart creates a make.bat in project root

Build the documents to various formats
make html
make singlehtml
make epub
make man
make latex
make text

Python specific (not covered here)
make doctest # Run unit tests embedded in docstrings
make coverage # Check documentation coverage of code

They will end up in the _build directory.

Pandoc

Pandoc is a universal document converter. It can take sources in reStructuredText, Markdown, LaTeX, Microsoft
Word docx, Open Document odt, HTML, epub, and many others and convert it in to various output formats including
HTML, docx, odt, ppt, epub, PDF, or other markup formats like Markdown, RST, AsciiDoc.

Pandoc is intended to be a uinversal may behave slightly differently from dedicated RST tools like docutils and
Sphinx which uses docutils. I would only recommend using Pandoc if you have special requirements to convert
to a format that is not suported by docutils and sphinx.

14 Chapter 3. reStructuredText (RST) Tutorial

https://pandoc.org/

FAH-Documentation-Test Documentation, Release 0.0.1

Install pandoc

Full installation instructions at Pandoc.org

Releases for Windows, Mac, Linux are available for download on GitHub at https://github.com/jgm/pandoc/releases.

• Windows: Download the installer from the pandoc releases page.

• Mac: Use brew to install: brew install pandoc

• Linux: Download the linux.tar.gz file and extract it. The bin/ directory contains the pandoc executable.
Alternatively, in Debian based distributions, there is a .deb package available for download on that GitHub
releases page.

Readthedocs.org

The website https://readthedocs.org/ is a great website that will build and host your documentation for you.
You can use Sphinx, Mkdcocs, or generate your own documents. I recommend using Sphinx. When you use
sphinx-quickstart to generate a docs/ directory in your project, ReadTheDocs.org will know what to do.
Sign up and tell ReadTheDocs.org about your repository, and set up a webhook to automatically build and host your
documentation any time there is a git push.

They will host multiple versions of documentation, you can use their theme or custom themes, and it even makes PDF
and ePub versions available.

3.1.4 Syntax examples

This is a mashup of common syntax. It’s like a cheatsheet for quick reference. There is some freedom with re-
StructuredText that allows you to pick different characters for creating headers and bulleted lists. As long as you
are consistent throughout your document it will interpret the headers automatically. This example uses my preferred
characters and styling for headings.

Overline and underline combined is separate from just underline. The lines can be created with any of the following
characters, based on preference. You just need to be consistent within a single document, ' " . , : ; ! ?
-)] } / \ >.

Try saving the contents of this example to sample.rst and build it to HTML to see how it looks yourself with:

rst2html5 sample.rst > sample.html

Some of the elements covered in this example are:

• Headings

• Comments

• Images

• Lists

• Preformatted text

• Code blocks

• Links

• Footnotes

• Transitions/lines/horizontal rules

• Tables

3.1. Learn to write beautiful documents 15

https://pandoc.org/installing.html
https://github.com/jgm/pandoc/releases
https://readthedocs.org/

FAH-Documentation-Test Documentation, Release 0.0.1

• Preserving line breaks

Here is the sample reStructuredText:

"""""""""""""""""
Document Title
"""""""""""""""""
...........
Subtitle
...........

.. contents:: Overview
:depth: 3

===================
Section 1
===================

Text can be *italicized* or **bolded** as well as ``monospaced``.
You can *escape certain* special characters.

Subsection 1 (Level 2)

Some section 2 text

Sub-subsection 1 (level 3)

Some more text.

=========
Examples
=========

Comments

.. This is a comment
Special notes that are not shown but might come out as HTML comments

Images

Add an image with:

.. image:: screenshots/file.png
:height: 100
:width: 200
:alt: alternate text

You can inline an image or other directive with the |customsub| command.

.. |customsub| image:: image/image.png
:alt: (missing image text)

(continues on next page)

16 Chapter 3. reStructuredText (RST) Tutorial

FAH-Documentation-Test Documentation, Release 0.0.1

(continued from previous page)

Lists

- Bullet are made like this
- Point levels must be consistent

* Sub-bullets
+ Sub-sub-bullets

- Lists

Term
Definition for term

Term2
Definition for term 2

:List of Things:
item1 - these are 'field lists' not bulleted lists
item2
item 3

:Something: single item
:Someitem: single item

Preformatted text

A code example prefix must always end with double colon like it's presenting
→˓something::

Anything indented is part of the preformatted block
Until
It gets back to

Allll the way left

Now we're out of the preformatted block.

Code blocks

There are three equivalents: ``code``, ``sourcecode``, and ``code-block``.

.. code:: python

import os
print(help(os))

.. sourcecode::

Equivalent

.. code-block::

Equivalent

(continues on next page)

3.1. Learn to write beautiful documents 17

FAH-Documentation-Test Documentation, Release 0.0.1

(continued from previous page)

Links

Web addresses by themselves will auto link, like this: https://www.devdungeon.com

You can also inline custom links: `Google search engine <https://www.google.com>`_

This is a simple link_ to Google with the link defined separately.

.. _link: https://www.google.com

This is a link to the `Python website`_.

.. _Python website: http://www.python.org/

This is a link back to `Section 1`_. You can link based off of the heading name
within a document.

Footnotes

Footnote Reference [1]_

.. [1] This is footnote number one that would go at the bottom of the document.

Or autonumbered [#]

.. [#] This automatically becomes second, based on the 1 already existing.

Lines/Transitions

Any 4+ repeated characters with blank lines surrounding it becomes an hr line, like
→˓this.

====================================

Tables

+--------+--------+--------+
| Time | Number | Value |
+========+========+========+
| 12:00 | 42 | 2 |
+--------+--------+--------+
| 23:00 | 23 | 4 |
+--------+--------+--------+

Preserving line breaks

Normally you can break the line in the middle of a paragraph and it will
(continues on next page)

18 Chapter 3. reStructuredText (RST) Tutorial

FAH-Documentation-Test Documentation, Release 0.0.1

(continued from previous page)

ignore the newline. If you want to preserve the newlines, use the ``|`` prefix
on the lines. For example:

| These lines will
| break exactly
| where we told them to.

3.1.5 Splitting up a document in to multiple files

Sphinx has a special directive for building linking pages together and embedding a table of contents from another page.
The toctree directive will essentially import the headings/table of contents from the file specified. It is good for
creating a master landing page that links to sub-documents. Here is an example of its usage snipped from the Python
official documentation at https://github.com/python/cpython/tree/master/Doc:

.. toctree::

whatsnew/index.rst
tutorial/index.rst
faq/index.rst
glossary.rst

about.rst
bugs.rst
copyright.rst
license.rst

And inside each one of those directories/.rst files, you can put more toctree elements if you have nested levels of
complexity.

3.1.6 Create a custom writer

The docutils package comes with several writers, including html4, html5, and odf. If you aren’t satisfied with the
existing output formats, you can create a custom Writer. You can subclass the existing writers if you want to extend
or modify them. We will look at how to extend the docutils.writers.html5_polyglot.Writer class to
override different methods and modify the output.

We’ll make a custom writer that outputs slightly modified HTML and we will print out just the body with no HTML
boilerplate. The goal is to generate HTML that can be inserted in to a content management system like Drupal where
it is assumed the outer HTML template and CSS styling is already available and all you need is the content section.

Base classes

docutils provides the base classes and tools needed. We will need to get more familiar with the writer and translator
classes. They are intimately tied together and we will be creating subclasses of both.

I found a great tutorial on this topic at http://www.arnebrodowski.de/blog/write-your-own-restructuredtext-writer.html
that covers this topic. I recommend giving it a read.

After inspecting the source code for docutils, this is how the class structure is set up for the html writer and
translator.

Writer class heirarchy for the HTML writers:

• docutils.writers.Writer

3.1. Learn to write beautiful documents 19

https://github.com/python/cpython/tree/master/Doc
http://www.arnebrodowski.de/blog/write-your-own-restructuredtext-writer.html

FAH-Documentation-Test Documentation, Release 0.0.1

– docutils.writers._html_base.Writer

* docutils.writers.html5_polyglot.Writer

* docutils.writers.html4css1.Writer

Translator class heirarchy for HTML translators:

• docutils.nodes.NodeVisitor

– docutils.nodes.GenericNodeVisitor

– docutils.writers._html_base.HTMLTranslator

* docutils.writers.html5_polyglot.HTMLTranslator

* docutils.writers.html4css1.HTMLTranslator

You need to define a custom Writer and Translator. The translator defines the logic used by the writer on how to
output/wrap each node. You can subclass an existing writer. These are some of the existing writer and translator
classes related to HTML output.

Note that this is only a few of the writer classes, there are several other subclasses in the docutils.writers
package, but these are the ones we’re interested in since we’re looking for custom HTML output. You can subclass any
one of these, depending on how much logic you want to inherit. We should choose wether to subclass the lowest level
class like docutils.writers.Writer or the highest level one available in the html5_polyglot module,
docutils.writers.html5_polyglot.Writer.

Minimal custom HTML writer

Here is a minimal example of how to create and use your own writer. In this case, we are simply inheriting the behavior
of the html5_polyglot writer and translator that come with docutils package. We aren’t modifying any of the
behavior yet, but it’s a good starting place.

Custom writer example:

"""Minimal writer/translator for customizing docutils output"""
from docutils.writers import html5_polyglot
from docutils.core import publish_string

class MyCustomHTMLTranslator(html5_polyglot.HTMLTranslator):
pass

class MyCustomHTMLWriter(html5_polyglot.Writer):
def __init__(self):

html5_polyglot.Writer.__init__(self)
self.translator_class = MyCustomHTMLTranslator

if __name__ == '__main__':
html_output = publish_string(source='Put reStructured text here.',

writer=MyCustomHTMLWriter())
print(html_output)

That example will run and output HTML. Now you are free to modify the behavior of the writer or the translator. To
see how they work under the hood, look in to the source code of its parent class, and the parent of that class too. Find
what functions you want to override and implement them in your class.

20 Chapter 3. reStructuredText (RST) Tutorial

FAH-Documentation-Test Documentation, Release 0.0.1

Full custom HTML writer

Since we want to lower the heading level by one, we should replace the method that is in charge or outputting those
header tags. I found it in docutils.writers._html_base.HTMLTranslator.visit_title() so I im-
plemented a visit_title() method in my own translator by copy and pasting the original one as a starting place.
Here is the full code used.

Custom HTML writer example:

"""
A custom docutils writer that will convert reStructuredText (RST) to html5,
but slightly modified from the html5_polyglot writer. The goal is to output
only the HTML body with the intention of embedding it inside a larger HTML
document using a content management system (CMS) like Drupal, Wordpress,
or Django.

- It only outputs the body, from subtitle to end of document, no HTML
boilerplate, no CSS, no title.

- It lowers the heading level by one. It assumes the h1 is being output
as the document title by the CMS. The output starts with the subtitle,
and goes to the end of the document.

Built using
http://www.arnebrodowski.de/blog/write-your-own-restructuredtext-writer.html
as a reference.

It has a translator and a writer.

The translator is a defines how to wrap or output each type of node.
At it's core, the translator is actually a ``nodes.GenericNodeVisitor``
that visits each node and decides how to process it.

The writer is what gets passed to the ``publish_*`` functions in the end
that process the document and provide HTML output.
The writer contains a reference to which translator it will use.

To use this writer, see the __main__ section at the bottom.
You call ``docutils.core.publish_*`` and pass it your customer writer.
"""
from docutils.writers import html5_polyglot
from docutils import nodes
import os

class HTMLBodyTranslator(html5_polyglot.HTMLTranslator):
"""
Contains all the logic on how to wrap various nodes with HTML.
For each node type, you can write a ``visit_*`` and ``depart_*``
method. Copy the existing method from
``docutils.writers.html5_polyglot.HTMLTranslator`` if there is one,
and modify it from there.

Get list of all node types::

>>> import docutils.nodes
>>> docutils.nodes.node_class_names
>>> help(docutils.nodes)

(continues on next page)

3.1. Learn to write beautiful documents 21

FAH-Documentation-Test Documentation, Release 0.0.1

(continued from previous page)

node_class_names:
Text
abbreviation acronym address admonition attention attribution author

authors
block_quote bullet_list
caption caution citation citation_reference classifier colspec comment

compound contact container copyright
danger date decoration definition definition_list definition_list_item

description docinfo doctest_block document
emphasis entry enumerated_list error
field field_body field_list field_name figure footer

footnote footnote_reference
generated
header hint
image important inline
label legend line line_block list_item literal literal_block
math math_block
note
option option_argument option_group option_list option_list_item

option_string organization
paragraph pending problematic
raw reference revision row rubric
section sidebar status strong subscript substitution_definition

substitution_reference subtitle superscript system_message
table target tbody term tgroup thead tip title title_reference topic

transition
version
warning

"""

def visit_title(self, node):
Modifed code, copied from parent class
check_id = 0 # TODO: is this a bool (False) or a counter?
close_tag = '</p>\n'
if isinstance(node.parent, nodes.topic):

self.body.append(
self.starttag(node, 'p', '', CLASS='topic-title first'))

elif isinstance(node.parent, nodes.sidebar):
self.body.append(

self.starttag(node, 'p', '', CLASS='sidebar-title'))
elif isinstance(node.parent, nodes.Admonition):

self.body.append(
self.starttag(node, 'p', '', CLASS='admonition-title'))

elif isinstance(node.parent, nodes.table):
self.body.append(

self.starttag(node, 'caption', ''))
close_tag = '</caption>\n'

elif isinstance(node.parent, nodes.document):
self.body.append(self.starttag(node, 'h1', '', CLASS='title'))
close_tag = '</h1>\n'
self.in_document_title = len(self.body)

else:
assert isinstance(node.parent, nodes.section)
h_level = self.section_level + self.initial_header_level# - 1
atts = {}
if (len(node.parent) >= 2 and

isinstance(node.parent[1], nodes.subtitle)):
(continues on next page)

22 Chapter 3. reStructuredText (RST) Tutorial

FAH-Documentation-Test Documentation, Release 0.0.1

(continued from previous page)

atts['CLASS'] = 'with-subtitle'
self.body.append(

self.starttag(node, 'h%s' % h_level, '', **atts))
atts = {}
if node.hasattr('refid'):

atts['class'] = 'toc-backref'
atts['href'] = '#' + node['refid']

if atts:
self.body.append(self.starttag({}, 'a', '', **atts))
close_tag = '</h%s>\n' % (h_level)

else:
close_tag = '</h%s>\n' % (h_level)

self.context.append(close_tag)

Required override
def should_be_compact_paragraph(self, node):

if(isinstance(node.parent, nodes.block_quote)):
return 0

class HTMLBodyWriter(html5_polyglot.Writer):
"""
A ``docutils`` writer that will output HTML intended to be used within
a larger existing HTML document, like within a content management system
blog post.

Writer that inherits from ``distutils.writers.html5_polyglot.Writer``.
but overrides the ``translator_class`` which makes a few tweaks
like lowering the heading levels by one.
"""

def __init__(self):
self.parts = {}
self.translator_class = HTMLBodyTranslator

if __name__ == '__main__': # rst2html5body.py
"""
Take a filename from the first command-line argument,
process it using the custom writer, and output the body section
only to standard output.

Example usage::

rst2html5body.py readme.rst > readme.html

Then use that output as the content for your blog post.
"""
from docutils.core import publish_parts
import sys

First argument provided on the command line is the RST file name
with open(sys.argv[1]) as rst_file:

rst_content = rst_file.read()

publish_parts() will return a dictionary with the different
parts of the document, like head, stylesheet, body, already

(continues on next page)

3.1. Learn to write beautiful documents 23

FAH-Documentation-Test Documentation, Release 0.0.1

(continued from previous page)

processed and turned in to HTML, just separated for us.
There are other ``publish_*`` options like publish_cmdline,
publish_file, publish_string, and more.
If you want the final full standalone HTML document with all the
boilerplate,use ``publish_string()`` instead.
output_document_parts = publish_parts(source=rst_content,

writer=HTMLBodyWriter())

>>> output_parts.keys() # List all of the parts available

['whole', 'encoding', 'version', 'head_prefix', 'head', 'stylesheet',
'body_prefix', 'body_pre_docinfo', 'docinfo', 'body', 'body_suffix',
'title', 'subtitle', 'header', 'footer', 'meta', 'fragment',
'html_prolog', 'html_head', 'html_title', 'html_subtitle', 'html_body']

print(output_document_parts['stylesheet'])
print(output_document_parts['body'])

The code above defines two classes and then provides a __main__ example of how to use it. The Writer class is
very simple, and it just specifies which translator to use. The bulk of the logic lives in the translator class.

3.1.7 Create a custom directive

Directives are the special lines that start with two dots and are treated as special functions. Some examples we’ve
already see are the table of contents .. contents:: and images .. image::. Under the hood, they really are
just calling Python functions. You can create your own custom directives to execute special logic or output dynamic
content.

There are several ways you can call a directive, depending on how much input you need to provide to the directive.
Here are some different examples:

.. mydirective::

.. mydirective2:: Argument1

.. mydirective3:: Somevalue1
:param1: somevalue2
:param2: somevalue3

.. mydirective4::

This is part of directive4.
All of this will get passed to directive4.
Until the indentation returns all the way to the left.

Now we're out of the directive body.

Read all about the built-in reStructuredText directives at http://docutils.sourceforge.net/0.14/docs/ref/rst/directives.
html

What if we made a:

.. beware:: dogs

.. image_carousel::

.. slideshow::

24 Chapter 3. reStructuredText (RST) Tutorial

http://docutils.sourceforge.net/0.14/docs/ref/rst/directives.html
http://docutils.sourceforge.net/0.14/docs/ref/rst/directives.html

FAH-Documentation-Test Documentation, Release 0.0.1

Start by looking at base directives Minimal example - extending an existing/base directive or full example - actually
do something

Use an example Pygments is a Python package for highlighting source code. There is a ..code:: directive that uses
Pygment.

In the Pygment source code repository it is in external/rst-directive.py. We can use that as a good
example.

https://bitbucket.org/birkenfeld/pygments-main/src/7941677dc77d4f2bf0bbd6140ade85a9454b8b80/external/
rst-directive.py?at=default&fileviewer=file-view-default

Base class

Built-in directives can be found in the docutils.parsers.rst.directives package. In there, you will find
all of the functions to register directives, call directives, and all of the directive classes like the Image class that
corresponds with the ..image:: directive.

All reStructuredText directives inherit from the base class docutils.parsers.rst.Directive which is de-
fined in docutils.parsers.rst.__init__.

..code:: python

Defined in docutils.parsers.rst.__init__.py class Directive(object):

The docstring on this class is actually quite thorough you can access it easily using pydoc from the command line:

python -m pydoc docutils.parsers.rst.Directive

Or from the interactive python interpreter:

>>> import docutils.parsers.rst
>>> help(docutils.parsers.rst.Directive)

Refer to those sources for a full list of options. We’ll look at a simple example to get you started.

References: # - http://docutils.sourceforge.net/docs/howto/rst-directives.html # - https://bitbucket.org/
birkenfeld/pygments-main/src/7941677dc77d4f2bf0bbd6140ade85a9454b8b80/external/rst-directive.py?at=default&
fileviewer=file-view-default

Custom directive:

from docutils import nodes
from docutils.parsers.rst import directives, Directive

class MyCustomDirective(Directive):
required_arguments = 1
optional_arguments = 0
final_argument_whitespace = True
option_spec = dict([(key, directives.flag) for key in VARIANTS])
has_content = True

def run(self):
self.assert_has_content()
self.arguments[0]
self.options

if error_condition:

(continues on next page)

3.1. Learn to write beautiful documents 25

https://bitbucket.org/birkenfeld/pygments-main/src/7941677dc77d4f2bf0bbd6140ade85a9454b8b80/external/rst-directive.py?at=default&fileviewer=file-view-default
https://bitbucket.org/birkenfeld/pygments-main/src/7941677dc77d4f2bf0bbd6140ade85a9454b8b80/external/rst-directive.py?at=default&fileviewer=file-view-default
http://docutils.sourceforge.net/docs/howto/rst-directives.html
https://bitbucket.org/birkenfeld/pygments-main/src/7941677dc77d4f2bf0bbd6140ade85a9454b8b80/external/rst-directive.py?at=default&fileviewer=file-view-default
https://bitbucket.org/birkenfeld/pygments-main/src/7941677dc77d4f2bf0bbd6140ade85a9454b8b80/external/rst-directive.py?at=default&fileviewer=file-view-default
https://bitbucket.org/birkenfeld/pygments-main/src/7941677dc77d4f2bf0bbd6140ade85a9454b8b80/external/rst-directive.py?at=default&fileviewer=file-view-default

FAH-Documentation-Test Documentation, Release 0.0.1

(continued from previous page)

raise self.error('Error message.')

Does format='html' mean it will get ignored in text or odf output?
We create a node to return
return [nodes.raw('', parsed, format='html')]

directives.register_directive('mydirective', MyCustomDirective)

if __name__ == '__main__':
reStructuredText_source = """
=====================
Custom directive test
=====================

.. mydirective::

My directive should have run now.
"""

Since the directive was registered already, it should get used when
the parser runs when it encounters the ``.. mydirective::`` text.
html_output = publiish_string(source=reStructuredText_source, writer=html5_polyglot.
→˓Writer)

print(html_output)

Base classes

docutils.parsers.rst.Directive

Minimal custom directive

There are two steps:

• Create a customer directive class that inherits from docutils.parsers.rst.Directive

• Register the directive with docutils.parsers.rst.directives.directives.
register_directive()

Once you have your directive registered, anytime you call one of the docutils.core.publish_* functions, it
will process your directive if it sees on in the reStructuredText it parses.

Custom directive example:

class MyCustomDirective(Directive)
run():
print('it ran!')
return(my custom node? a text node? a code bloc node? an image? etc)
process without outputting anything?

directives.register('shortcutname', MyCustomDirective)

26 Chapter 3. reStructuredText (RST) Tutorial

FAH-Documentation-Test Documentation, Release 0.0.1

Full custom directive

The previous example was a minimal skeleton. This example will actually do something.

3.1.8 Sublime Text RST Plugin

There is a Sublime Text package that helps when writing reStrucutredText. It helps with navigation, formatting,
collapsing blocks, and more.

You can find more information about the plugin at: https://packagecontrol.io/packages/Restructured%20Text%20%
28RST%29%20Snippets

The plugin comes with several features, including:

• Auto over/underline formatting for headers

• Smart bullet lists

• Quick build/preview shortcut

• Section folding

• Jump between headers

Setup plugin

Use the Sublime Text package manager to install the plugin. Install that first if you do not already have it.

Then, to install the package, in Sublime Text:

• Press Ctrl-Shift-P

• Search for RST Snippets

• Highlight the plugin in the search results and press enter to install.

Use the plugin

There are several features in the plugin but I will cover a few basics. See full documentation at https://packagecontrol.
io/packages/Restructured%20Text%20%28RST%29%20Snippets for full details.

• When writing headers, just over/underline it with 3 characters and then press tab and it will auto complete the
underlines to match the length of the title.

• When making a bullet list, press enter and it will automatically add the next bullet point on the next line. You
can also press tab to indent one more level and it will swap out the bullet character to match the next level.

• Quick build/preview shortcut - Press Ctrl-Shift-R to build and preview the document.

• Folding and unfolding - Press Shift-Tab while the cursor is on a heading

• Jump between headers with Alt-Up/Down

3.1. Learn to write beautiful documents 27

https://packagecontrol.io/packages/Restructured%20Text%20%28RST%29%20Snippets
https://packagecontrol.io/packages/Restructured%20Text%20%28RST%29%20Snippets
https://packagecontrol.io/
https://packagecontrol.io/packages/Restructured%20Text%20%28RST%29%20Snippets
https://packagecontrol.io/packages/Restructured%20Text%20%28RST%29%20Snippets

FAH-Documentation-Test Documentation, Release 0.0.1

3.1.9 Reference Links

• reStructuredText Wikipedia - https://en.wikipedia.org/wiki/ReStructuredText

• Docutils - http://docutils.sourceforge.net/

• reStructuredText directives - http://docutils.sourceforge.net/0.14/docs/ref/rst/directives.html

• Sphinx - http://www.sphinx-doc.org/en/master/

• Pandoc - https://pandoc.org/

• PyPI - https://pypi.org/

• Python Documentation - https://www.python.org/doc/

• ReadTheDocs - python docs

• GitHub - https://github.com/

• Sublime Text Plugin - https://packagecontrol.io/packages/Restructured%20Text%20%28RST%29%20Snippets

28 Chapter 3. reStructuredText (RST) Tutorial

https://en.wikipedia.org/wiki/ReStructuredText
http://docutils.sourceforge.net/
http://docutils.sourceforge.net/0.14/docs/ref/rst/directives.html
http://www.sphinx-doc.org/en/master/
https://pandoc.org/
https://pypi.org/
https://www.python.org/doc/
https://github.com/
https://packagecontrol.io/packages/Restructured%20Text%20%28RST%29%20Snippets

CHAPTER

FOUR

NOTED STYLE/FONT

• Bullet

• Bold

• Italic

• Monospace

• You can *escape certain* special characters. Tab

29

	User Guide
	Contact Us
	reStructuredText (RST) Tutorial
	Noted Style/Font

